11 research outputs found

    From IF to BI: a tale of dependence and separation

    Full text link
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Vaananen, and their compositional semantics due to Hodges. We show how Hodges' semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics is the logic of Bunched Implications due to Pym and O'Hearn, which combines intuitionistic and multiplicative connectives. This introduces several new connectives not previously considered in logics of informational dependence, but which we show play a very natural role, most notably intuitionistic implication. As regards the quantifiers, we show that their interpretation in the Hodges semantics is forced, in that they are the image under the general construction of the usual Tarski semantics; this implies that they are adjoints to substitution, and hence uniquely determined. As for the dependence predicate, we show that this is definable from a simpler predicate, of constancy or dependence on nothing. This makes essential use of the intuitionistic implication. The Armstrong axioms for functional dependence are then recovered as a standard set of axioms for intuitionistic implication. We also prove a full abstraction result in the style of Hodges, in which the intuitionistic implication plays a very natural r\^ole.Comment: 28 pages, journal versio

    AN EXTENSION OF A THEOREM OF ZERMELO

    Get PDF
    We show that if (M, is an element of(1), is an element of(2)) satisfies the first-order Zermelo-Fraenkel axioms of set theory when the membership relation is is an element of(1) and also when the membership relation is is an element of(2), and in both cases the formulas are allowed to contain both is an element of(1) and is an element of(2), then (M, is an element of(1)) congruent to (M, is an element of(2)), and the isomorphism is definable in (M, is an element of(1 ),( )is an element of(2)). This extends Zermelo's 1930 theorem in [6].Peer reviewe

    Diversity, dependence and independence

    Get PDF
    We propose a very general, unifying framework for the concepts of dependence and independence. For this purpose, we introduce the notion of diversity rank. By means of this diversity rank we identify total determination with the inability to create more diversity, and independence with the presence of maximum diversity. We show that our theory of dependence and independence covers a variety of dependence concepts, for example the seemingly unrelated concepts of linear dependence in algebra and dependence of variables in logic.Peer reviewe

    Lindstrom theorems for fragments of first-order logic

    No full text
    Lindstr\"om theorems characterize logics in terms of model-theoretic conditions such as Compactness and the L\"owenheim-Skolem property. Most existing characterizations of this kind concern extensions of first-order logic. But on the other hand, many logics relevant to computer science are fragments or extensions of fragments of first-order logic, e.g., k-variable logics and various modal logics. Finding Lindstr\"om theorems for these languages can be challenging, as most known techniques rely on coding arguments that seem to require the full expressive power of first-order logic. In this paper, we provide Lindstr\"om theorems for several fragments of first-order logic, including the k-variable fragments for k>2, Tarski's relation algebra, graded modal logic, and the binary guarded fragment. We use two different proof techniques. One is a modification of the original Lindstr\"om proof. The other involves the modal concepts of bisimulation, tree unraveling, and finite depth. Our results also imply semantic preservation theorems
    corecore